

Qualification of different materials for heat transfer in module construction

Tobias Barvich, Conny Beskidt, Wim de Boer, Alexander Dierlamm, Dirk Heil, •Stefan Maier **DPG-Tagung Hamburg, 02. März 2016, T 75.6**

Institut für Experimentelle Kernphysik

CMS Requirements for HL-LHC Tracker

- Trigger capability → Modules with two sensors sharing a common hybrid allows for signal correlations
- Higher granularity → pixel sensors in inner tracker, Pixel-Strip (PS) modules in inner tracker, Strip-Strip (2S) modules in outer tracker

≈ 8400 2S and 7000 PS modules with a total power of 90-100 kW

How to transfer 90-100 kW from the modules to the CO₂ cooling (-30°C)?

Heat conducting materials

Synthetic graphite (SG)

- Produced simply by sintering polyimide tape above 3000°C (plasma ovens) → carbon changes into liquid crystal phase and forms highly conductive graphene layers in x,y directions
- Graphite covered with adhesive layers on both sides, so components can be directly glued to cooling structure with SG tape
- Typical thickness 25 or 40 µm graphite with 12 µm adhesive layers
- Adhesive layers withstand HV of sensor

Widely used for cooling in electronics (mobile phones,...) so cheap and many manufacturers (providing precut shapes)

A module study

- Support from CF foam sandwich: unidirectional (UD) carbon fiber (0°/90°-layers each side) with Airex R82.60 foam in between
- Synthetic graphite tape (SGT) folded around support

Module construction by simply pressing the parts on the adhesive glue layer (automatization possible)

PS module

Baseplate from synthetic graphite with cooling pipe glued to it

Pixel sensor and MPAs at bottom generates 3W, so needs to be directly glued to cooling tube

Thermal conductivity measurement

Results

	CF			SGT
	Mitsubishi* 0°	Mits. 0°/90°/0°	Granoc** 0°	DSN5040
λ_x (W/mK)	270	143	220	600
λ_y (W/mK)	~1.6	80	1.6	600
λ_z (W/mK)	~1.6	~1.6	1.6	20
d (µm)	78	~200	50	40
ρ (g/cm³)	2.38	2.38	2.38	1.36

The heat conductivity of SG is in both longitudinal directions more than twice and in transversal direction more than ten times as good as CF

*K13D2U **YS-90: E9026A-05S

Thermal dummy PS module

Support

- Hot press process (4bar, 120°C, 2h)
- 0°/90°/ Airex /90°/0°

Dummy module

- temperature sensors
- heating resistors (thin PCB with copper on both sides and top shaped as resistor)
- water cooling (23°C)

Dummy PS module – ΔT measurements

Stefan Maier (Karlsruhe Institute of Technology) Qualification of different materials for heat transfer in module construction

Dummy PS module – ΔT simulation

Stefan Maier (Karlsruhe Institute of Technology) Qualification of different materials for heat transfer in module construction

Conclusion

- SG tape interesting material for future module construction
- Sticks well to metal and CF by pressure sensitive adhesives
- SG tape allows for easy module construction (no curing time) and excellent thermal performance
- Proven to work for dummy prototypes

Backup

Calculation λ

P =
$$\frac{\Delta T}{R} = \frac{\Delta T}{R_b + R_c}$$

P = $\lambda_{Al} A_{Al} \frac{dT}{dx}$
R = $\frac{1}{\frac{1}{R_R} + \frac{1}{R_{CF}}}$
Rohacell

$$R_R = 1500 \ K/W$$
$$\lambda_{CF} = \frac{d}{R_{CF} \cdot A} = \frac{d}{R_{CF} \cdot b \cdot h}$$

R_c was determined with an aluminium-measurement as 3,3 K/W

Problems

- Heat transfer trough the isolation → unable to measure big thermal resistances
- No ideal setup, a vacuum tank instead of styrodur would be better

Thermal dummy module – cooling setup / 25

Thermal 2S dummy module - ΔT measurement

02.03.2016

Stefan Maier (Karlsruhe Institute of Technology) Qualification of different materials for heat transfer in module construction